Qualitative Assessment of Inland and Coastal Waters by Using Remotely Sensed Data
نویسندگان
چکیده
The prime purpose of the research study was to elucidate the potential of remotely sensed data for estimation of water quality parameters (WQPs) in inland and coastal waters. The useful application of remotely sensed data for operational monitoring of water bodies demand for improved algorithms and methodology. The in situ hyperspectral Spectroradiometer data, water quality data and Airborne Imaging Spectroradiometer for Applications (AISA) data of Apalachicola Bay Florida, USA were collected. The data was analyzed to develop the models for assessment of total suspended sediment (TSS), chlorophyll-a (chl-a), and secchi depth. The analysis of collected spectral data reveals that a peak reflectance in red domain was well correlated with chlorophyll-a concentration. The optical depth is found to be strongly correlated with Chl-a and TSS. In order to examine the feasibility of multispectral data for water quality monitoring; AISA data was integrated into band widths of ALOS/AVNIR-2 sensor. The combination of three bands, band 2, 3 and band 4 was developed to correlate the remotely sensed data with TSS. The developed regression models showed good correlation with water quality parameters and may successfully applied for estimation of WQP in surface waters. The research work demonstrates an example for the successful application of remotely sensed data for monitoring the distribution of water quality parameters in water bodies.
منابع مشابه
Coastal water quality assessment based on the remotely sensed water quality index using time series of satellite images
This study was conducted with the aim of providing a remotely sensed water quality index in Assaluyeh port using remote sensing technology. so, according to the region conditions, studying of scientific resources and access to satellite data, the parameters of heavymetals, dissolved ions, SST, chlorophyll-a and pH were selected. Then, by reviewing sources, the product MYD091km, MYD021km, MOD02...
متن کاملکاربرد سنجش از دور و شبکه عصبی مصنوعی در تخمین غلظت رسوب معلق رودخانه (مطالعه موردی: رودخانه کارون)
Spectral Reflectance of suspended sediment concentration (SSC) remotely sensed by satellite images is an alternative and economically efficient method to measure SSC in inland waters such as rivers and lakes, coastal waters, and oceans. This paper retrieved SSC from satellite remote sensing imagery using radial basis function networks (RBF). In-situ measurement of SSC, water flow data, as well ...
متن کاملA Comparative Study of SVM and RF Methods for Classification of Alteration Zones Using Remotely Sensed Data
Identification and mapping of the significant alterations are the main objectives of the exploration geochemical surveys. The field study is time-consuming and costly to produce the classified maps. Therefore, the processing of remotely sensed data, which provide timely and multi-band (multi-layer) data, can be substituted for the field study. In this study, the ASTER imagery is used for altera...
متن کاملDemonstrating Landsat’s New Potential to Monitor Coastal and Inland Waters
The Operational Land Imager (OLI) is a new Landsat sensor being developed by the joint USGS-NASA Landsat Data Continuity Mission (LDCM) that exhibits the potential to be a state-of-the-art instrument for studying inland and coastal waters. With upgrades such as a new Coastal Aerosol band, 12 bit quantization, and improved signal-to-noise, OLI will be spectrally and radiometrically superior to i...
متن کاملSpatiotemporal Estimation of PM2.5 Concentration Using Remotely Sensed Data, Machine Learning, and Optimization Algorithms
PM 2.5 (particles <2.5 μm in aerodynamic diameter) can be measured by ground station data in urban areas, but the number of these stations and their geographical coverage is limited. Therefore, these data are not adequate for calculating concentrations of Pm2.5 over a large urban area. This study aims to use Aerosol Optical Depth (AOD) satellite images and meteorological data from 2014 to 2017 ...
متن کامل